這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。
Announced in 2016, Gym is an open-source Python library developed to facilitate the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research, making released research study more quickly reproducible [24] [144] while providing users with a basic user interface for engaging with these environments. In 2022, new advancements of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support learning (RL) research on computer game [147] utilizing RL algorithms and study generalization. Prior RL research study focused mainly on optimizing representatives to resolve single jobs. Gym Retro provides the capability to generalize between games with similar concepts however various appearances.
RoboSumo
Released in 2017, is a virtual world where humanoid metalearning robotic representatives initially lack understanding of how to even walk, but are provided the objectives of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial learning procedure, the representatives discover how to adapt to altering conditions. When an agent is then eliminated from this virtual environment and placed in a new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually learned how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents might produce an intelligence "arms race" that could increase a representative's capability to function even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that discover to play against human players at a high ability level completely through trial-and-error algorithms. Before ending up being a team of 5, the very first public demonstration happened at The International 2017, the yearly best championship competition for the game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of actual time, and that the learning software application was an action in the direction of creating software application that can manage complicated jobs like a surgeon. [152] [153] The system uses a type of reinforcement learning, as the bots find out gradually by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a complete group of 5, and they had the ability to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against expert players, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 total games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the difficulties of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has actually demonstrated making use of deep reinforcement knowing (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes machine learning to train a Shadow Hand, a human-like robotic hand, to control physical things. [167] It learns entirely in simulation using the same RL algorithms and training code as OpenAI Five. OpenAI took on the object orientation issue by utilizing domain randomization, a simulation technique which exposes the learner to a range of experiences instead of attempting to fit to truth. The set-up for Dactyl, aside from having movement tracking cameras, also has RGB electronic cameras to allow the robot to control an arbitrary things by seeing it. In 2018, OpenAI showed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might resolve a Rubik's Cube. The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to model. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of creating gradually harder environments. ADR differs from manual domain randomization by not needing a human to define randomization varieties. [169]
API
In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs established by OpenAI" to let developers call on it for "any English language AI task". [170] [171]
Text generation
The company has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")
The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his coworkers, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative model of language might obtain world understanding and process long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language model and the successor to OpenAI's initial GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative versions at first released to the general public. The complete variation of GPT-2 was not instantly launched due to issue about possible misuse, consisting of applications for writing fake news. [174] Some professionals expressed uncertainty that GPT-2 presented a substantial threat.
In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural phony news". [175] Other researchers, such as Jeremy Howard, cautioned of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the complete version of the GPT-2 language model. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue unsupervised language designs to be general-purpose learners, shown by GPT-2 attaining advanced accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI stated that the complete version of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as few as 125 million specifications were also trained). [186]
OpenAI mentioned that GPT-3 succeeded at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing between English and Romanian, and in between English and German. [184]
GPT-3 drastically improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language designs might be approaching or encountering the essential capability constraints of predictive language designs. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately released to the general public for issues of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed specifically to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can develop working code in over a lots programming languages, most efficiently in Python. [192]
Several problems with problems, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been implicated of giving off copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar test with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise check out, analyze or produce approximately 25,000 words of text, and compose code in all significant shows languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained some of the issues with earlier revisions. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has declined to reveal numerous technical details and data about GPT-4, such as the exact size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained cutting edge results in voice, multilingual, and vision standards, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly beneficial for enterprises, start-ups and designers seeking to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been designed to take more time to consider their reactions, causing greater accuracy. These designs are particularly effective in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, yewiki.org o1-preview was replaced by o1. [211]
o3
On December 20, 2024, OpenAI revealed o3, the follower of the o1 thinking design. OpenAI likewise revealed o3-mini, a lighter and faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the chance to obtain early access to these models. [214] The design is called o3 rather than o2 to prevent confusion with telecoms companies O2. [215]
Deep research
Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to perform comprehensive web browsing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools allowed, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to analyze the semantic similarity in between text and images. It can significantly be utilized for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to translate natural language inputs (such as "a green leather bag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and produce corresponding images. It can create pictures of reasonable objects ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI revealed DALL-E 2, an upgraded variation of the model with more practical outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a brand-new rudimentary system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI revealed DALL-E 3, a more effective design better able to generate images from complicated descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video model that can create videos based on brief detailed triggers [223] in addition to extend existing videos forwards or backwards in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The maximal length of created videos is unidentified.
Sora's advancement team called it after the Japanese word for "sky", to symbolize its "limitless imaginative potential". [223] Sora's technology is an adaptation of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos licensed for that function, but did not expose the number or the exact sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it could generate videos approximately one minute long. It likewise shared a technical report highlighting the techniques used to train the model, and the model's capabilities. [225] It acknowledged some of its imperfections, including battles mimicing intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", however noted that they should have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, notable entertainment-industry figures have actually shown significant interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the technology's ability to create realistic video from text descriptions, citing its prospective to reinvent storytelling and material creation. He said that his excitement about Sora's possibilities was so strong that he had actually decided to stop briefly prepare for expanding his Atlanta-based movie studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a big dataset of diverse audio and is also a multi-task model that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a tune generated by MuseNet tends to start fairly but then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the web psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs song samples. OpenAI mentioned the songs "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the tunes do not have "familiar larger musical structures such as choruses that duplicate" and that "there is a considerable space" in between Jukebox and human-generated music. The Verge mentioned "It's highly remarkable, even if the results seem like mushy versions of songs that might feel familiar", while Business Insider stated "remarkably, some of the resulting tunes are memorable and sound genuine". [234] [235] [236]
User interfaces
Debate Game
In 2018, OpenAI released the Debate Game, which teaches makers to discuss toy issues in front of a human judge. The function is to research study whether such an approach may assist in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of eight neural network designs which are typically studied in interpretability. [240] Microscope was created to evaluate the features that form inside these neural networks quickly. The models included are AlexNet, VGG-19, various variations of Inception, and different variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an artificial intelligence tool built on top of GPT-3 that supplies a conversational interface that enables users to ask questions in natural language. The system then reacts with an answer within seconds.
這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。